Search a node in Binary search tree


In this tutorial, we are going to learn that how to search a node in a Binary search tree using recursive and iterative solution.

Search a node in a binary search tree

While searching a node in a Binary Tree, we traverse each node one by one and check if required node is available or not.

But in case of Binary Search Tree, we are not required to traverse and check each and every node. Here we can compare the root node and if it is equal to the root node then search is complete otherwise check if node to be searched is less than or greater than the root node.

If the node to be searched is less than root node then ignore the right subtree and continue with the same approach in left subtree or if that node is greater than root node then ignore the left subtree and continue with the same approach in right subtree.

If the node to be searched is available in the BST then return True otherwise return False.

Example -

Input: 
      5
    /   \
   3     8
  / \   / \
 1   4 6   9

 Node to be searched: 6

Output: True

We can solve this problem in two ways-

  1. Recursive solution
  2. Iterative solution

Recursive solution

Algorithm

Find_Recur(root, data)
1.  if root is null then return False
2.  if root.data == data then return True
3.  else
4.    if data < root.data
5.      return Find_Recur(root.left, data)
6.    else
7.      return Find_Recur(root.right, data)
Python
class Node:
    def __init__(self, data):
        self.left = None
        self.data = data
        self.right = None

def find(root, data):
    if not root: return False
    if root.data == data: return True
    else:
        if data < root.data: 
            return find(root.left, data)
        else: 
            return find(root.right, data)

bst_root = Node(10)
bst_root.left = Node(6)
bst_root.right = Node(16)
bst_root.left.left = Node(4)
bst_root.left.right = Node(9)
bst_root.right.left = Node(13)
bst_root.right.right = Node(20)
print(find(bst_root, 16))
JavaScript
class Node {
  constructor(data) {
    this.left = null;
    this.data = data;
    this.right = null;
  }
}

function find(root, data) {
  if (!root) return false;
  if (root.data == data) return true;
  else {
    if (data < root.data) return find(root.left, data);
    else return find(root.right, data);
  }
}

const bstRoot = new Node(10);
bstRoot.left = new Node(6);
bstRoot.right = new Node(16);
bstRoot.left.left = new Node(4);
bstRoot.left.right = new Node(9);
bstRoot.right.left = new Node(13);
bstRoot.right.right = new Node(20);
console.log(find(bstRoot, 16));

Output

True

Iterative solution

Algorithm

Find_Iter(root, data)
1.  node = root
2.  while node is not null
3.    if node.data == data then
4.      return True
5.    if data < node.data
6.      node = node.left
7.    else
8.      node = node.right
8.  return False
Python
class Node:
    def __init__(self, data):
        self.left = None
        self.data = data
        self.right = None

def find(root, data):
    node = root
    while node:
        if node.data == data: return True
        if data < node.data:
            node = node.left
        else:
            node = node.right
    return False

bst_root = Node(10)
bst_root.left = Node(6)
bst_root.right = Node(16)
bst_root.left.left = Node(4)
bst_root.left.right = Node(9)
bst_root.right.left = Node(13)
bst_root.right.right = Node(20)
print(find(bst_root, 16))
JavaScript
class Node {
  constructor(data) {
    this.left = null;
    this.data = data;
    this.right = null;
  }
}

function find(root, data) {
  let node = root;
  while (node != null) {
    if (node.data == data) return true;
    if (data < node.data) node = node.left;
    else node = node.right;
  }
  return false;
}

const bstRoot = new Node(10);
bstRoot.left = new Node(6);
bstRoot.right = new Node(16);
bstRoot.left.left = new Node(4);
bstRoot.left.right = new Node(9);
bstRoot.right.left = new Node(13);
bstRoot.right.right = new Node(20);
console.log(find(bstRoot, 16));

Output

True

Time complexity: The time complexity of both of these solution will be O(log n) if the tree is balanced but in worst case the time complete will be O(n) if the tree is not balanced i.e, tree becomes skewed.


Recommended Posts